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Geographic consistency in dominant,
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Abstract

Non-typeable Haemophilus influenzae (NTHi)-associated ear and respiratory diseases (including pneumonia) represent a
major health burden in many parts of the world. NTHi strains retrieved from the upper airways commonly reflect
those found in the lower airways. Despite growing genomic and genotyping data on NTHi, there remains a limited
understanding of global and regional NTHi population structures. The aim of this study was to determine whether
nasopharyngeal carriage in four Australian paediatric groups at varying risk of NTHi colonisation was dominated by the
same NTHi genotypes. Genotyping data generated by PCR-ribotyping were evaluated for 3070 NTHi isolates colonising
the nasopharynges of Aboriginal and non-Aboriginal children enrolled in four longitudinal studies in three separate
urban and remote regions of Australia. Several NTHi PCR-ribotypes dominated in nasopharyngeal carriage, irrespective
of study setting. Principal coordinates analysis confirmed a cluster of common PCR-ribotypes among all cohorts. In
conclusion, we identified dominant PCR-ribotypes common to geographically disparate Australian paediatric
populations. Future genomic analyses will shed further light on the precise factors underlying the dominance
of certain NTHi strains in nasopharyngeal carriage.
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Background
Diseases associated with non-typeable Haemophilus
influenzae (NTHi) represent a major health burden
worldwide [1]. This Gram-negative bacterium is com-
monly associated with adult community-acquired pneu-
monia (CAP), particularly among those with underlying
respiratory disease [2]. Because young children generally
cannot expectorate, the aetiology of paediatric CAP is
poorly understood and a role for NTHi remains contro-
versial. NTHi is also associated with chronic lung dis-
eases; for example, it is the most commonly detected
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pathogen in chronic obstructive pulmonary disease, a
disease identified by the World Health Organization as
the third leading cause of mortality globally [3]. NTHi is
the most common bacterium in the lower airways of
adults and children with non-cystic fibrosis bronchiec-
tasis [4, 5], being cultured from the sputa of up to 70 %
of adults [5], and 78 % of bronchoalveolar lavage speci-
mens from Australian Indigenous children with bronchi-
ectasis [4]. NTHi is also a major otitis media pathogen
and has been detected in 89 % of ear discharge speci-
mens from children with suppurating ears in remote
Australian Indigenous communities [6].
Genetic and genomic studies have shown that NTHi

is a genetically diverse organism that frequently
undergoes lateral gene transfer [7, 8], a trait that has
hindered our understanding of the population biology
of this organism. As an example of this diversity, the
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H. influenzae multilocus sequence typing (MLST)
database (http://pubmlst.org/hinfluenzae/) currently
lists 1369 NTHi isolates with MLST data from across
the globe, which are represented by 966 distinct se-
quence types (STs). Similarly, our studies of NTHi
nasopharyngeal carriage isolates have identified 130
PCR-ribotypes (PRTs) to date. Despite this high level
of diversity, several studies have identified a popula-
tion structure among NTHi [7, 9]. Of note, MLST and
whole genome analyses show some correlation be-
tween population structure and virulence potential, al-
though no geographic clustering was detected [7, 9].
While these data contribute to our understanding of
NTHi populations, large genomic studies are necessary to
improve our understanding of geographic patterns, tem-
poral changes (including outbreaks), adaptive evolutionary
pressures such as those driven by antibiotic or vaccine se-
lection, and tissue tropism. Whole genome sequencing is
ideal for exploration of bacterial population structure, and
that is the direction for future studies; however, in the
current study we used PRT. In addition to its cost ef-
fectiveness, PRT has the advantage of interrogating
16S rDNA, which is an evolutionarily stable marker
across bacterial species. This slow rate of evolution
potentially provides a more robust signal for detecting
strain relatedness than other genotyping methods that
are based on non-ribosomal loci. We compared PRT
data for 3070 nasopharyngeal carriage NTHi isolates
obtained from four paediatric groups from three dis-
tinct geographic regions of Australia. Our aim was to
determine whether the same NTHi PRTs dominated in
Table 1 Description of the 4 Australian paediatric non-typeable Hae

Study Study design, setting and
participant ethnicity

Year of
data

No. enrolled
children
(NTHi carriage rate)

Child
age
key c

1 Cluster RCT of a hygiene
intervention in 20 Darwin
(NT) child care centres.
90 % were non-Aboriginal
[10]

2001 456
(50 %)

0–4
atten
3 d/w

2 RCT of azithromycin vs
amoxicillin for AOM in 16
remote NT communities.
All were Aboriginal children
[11]

2003–2005 320
(316 with swab data)
(85 %)

0.5–6
AOM

3 Kalgoorlie (WA) Otitis Media
Research Project.
Prospective Aboriginal
cohort [12, 14]

1999–2005 100
(36.3 %)

1 wk

4 Kalgoorlie (WA) Otitis Media
Research Project. Prospective
non-Aboriginal cohort [12, 14]

1999–2005 180
(9.4 %)

1 wk

RCT randomised-controlled trial, AOM acute otitis media, NP nasopharyngeal, PRT P
aA single isolate of each PRT from each swab
bAll families provided written informed consent for their child’s participation
nasopharyngeal carriage in these geographically dis-
tinct populations.

Methods
Study design
This was a retrospective cohort study that analysed
NTHi genotyping data generated previously in com-
pleted studies.

Participants and setting
Study design, setting (location, dates of data collection,
child eligibility criteria) are summarised in Table 1.
Written informed consent was obtained from families
to enrol their child in these studies. Consent forms
and procedures were undertaken according to require-
ments of each ethical review board (see details below).
Participants in Study 1 (Table 1) were primarily non-
Aboriginal children attending childcare in the tropical
city of Darwin in the Northern Territory; these chil-
dren were enrolled in a cluster randomised-controlled
trial of a hygiene intervention [10]. All families were
invited by letter to participate and those children
whose parents consented were included in the study.
Study 2 participants were Aboriginal children with
acute otitis media (AOM) living in 16 remote commu-
nities across the Northern Territory; these communi-
ties ranged from those in the arid centre of Australia,
up to the tropical northern “Top End” region. We
attempted to screen all age-eligible children for AOM.
Children with AOM whose parents consented were en-
rolled in a randomised-controlled trial of antibiotics
mophilus influenzae (NTHi)-carriage cohorts used in this study

eligibility
& other
riteriab

Collection frequency
(No. NTHi
positive swabs)

No. unique
NTHi typeda

(Total NTHi typed)

No. PRTs

(No. per 100 swabs)

yrs,
ding
k

Fortnightly for 6 m
(2,012)

2,179
(2,201)

84
(4)

yrs with Days 0 and 6–11.
Additionally, Day
12–21 if perforation.
(469)

551
(569)

73
(13)

to 24 m Ages 1–3, 6–8 wks,
then months 4, 6,
12, 18, 24.
(193)

231
(346)

65
(28)

to 24 m Ages 1–3, 6–8 wks,
then months 4, 6,
12, 18, 24.
(102)

109
(192)

37
(34)

CR-ribotype, NT Northern Territory, WA Western Australia
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for AOM [11]. Study 3 and Study 4 included Aborigi-
nal and non-Aboriginal children, respectively, from the
semi-arid town of Kalgoorlie in southern Western
Australia enrolled in a prospective study of otitis
media and nasopharyngeal carriage [12]. All mothers
were visited post-partum and invited to participate.
None of the children in any of the four study groups
(cohorts) had received the 10-valent pneumococcal H.
influenzae protein D vaccine.

Laboratory and statistical analyses
For this study, we used genotyping data generated by
PRT, a method that interrogates genetic polymorphisms
in the H. influenzae ribosomal operons using restriction
digestion [13]. Briefly, approximately 6 kb ribosomal op-
erons (16S–5S) were amplified by long-PCR, and HaeIII
restriction fragments of the resulting product were sepa-
rated by agarose gel electrophoresis. PRTs were assigned
based on restriction fragment lengths (0.4 to 1.2 kb) fol-
lowing alignment to a 2-log DNA ladder (New England
BioLabs, United States) and an in-house standard. To
aid pattern recognition, the images were divided into 16
predetermined sections.
NTHi isolates were cultured from nasopharyngeal

swabs or aspirates as described previously [4, 12].
Specimens were stored in skim milk-tryptone-glucose-
glycerol broth at −70 to −80 °C prior to culture of
10 μl of specimen onto bacitracin-vancomycin-
clindamycin chocolate agar. NTHi were identified by
colony morphology, dependence on X and V factors,
and a lack of reaction with the Phadebact® Haemophi-
lus Test capsular antisera (MKL Diagnostics, Sweden).
All isolates (Studies 3–4) or the majority of isolates
representing all PRTs (Studies 1–2) were tested for H.
haemolyticus misidentification by PCR targeting hpd
or 16S rRNA genes [14, 15]. In the Northern Territory
studies, 0.2 % (1/479) of presumptive NTHi from
nasopharyngeal swabs were H. haemolyticus [16],
while 9.5 % (57/595) of presumptive NTHi from Stud-
ies 3 and 4 in Western Australia were H. haemolyticus
[14]. Isolates were not tested for Protein D expression
or as capsule-deficient strains of encapsulated H.
influenzae. For Study 1 and Study 2, one NTHi colony
from each positive specimen, and any that were mor-
phologically distinct, were genotyped by PRT [13]. For
Study 3 and Study 4, two colonies of presumptive
NTHi where available (including any that were mor-
phologically distinct) were subjected to PRT. A single
isolate of each PRT from each swab was included in
the analysis. Principal coordinates analysis of genotyp-
ing data was performed using Plymouth Routines in
Multivariate Ecological Research (PRIMER)-E (PRI-
MER-E Ltd, UK) [17]. The similarity of PRT distribu-
tions across the four studies is shown in Fig. 1, with
circles indicating each PRT and its positional location
across the principal coordinates (PCO1 and PCO2) in-
dicated on the axes; the size of the circle is propor-
tional to the number of isolates.

Results and discussion
In the Northern Territory paediatric cohorts (Study 1
and Study 2), the mean NTHi carriage rates across all
swabs were approximately 50 % (unpublished) for Study
1 and 85 % (269/316) at baseline for Study 2 [11]
(Table 1). In the Kalgoorlie studies, NTHi carriage rates
among the Aboriginal (Study 3) and non-Aboriginal
(Study 4) children were 36.3 % (183/504) and 9.4 % (98/
1045), respectively [14]. In Study 1, 84 different PRTs
were identified among 2179 NTHi isolates. In Study 2,
73 different PRTs were identified among 551 NTHi iso-
lates. In Study 3, 65 different PRTs were detected among
231 NTHi isolates, and 37 PRTs were detected among
109 isolates in Study 4.
Although many different NTHi PRTs were present in

these studies (Table 1), several NTHi PRTs dominated
(Table 2), irrespective of study setting, ethnicity, or pres-
ence of AOM. In each study, the six dominant PRTs
accounted for 44 % (960/2179) (Study 1), 35 % (193/551)
(Study 2), 35 % (81/231) (Study 3), and 46 % (50/109)
(Study 4) of all isolates. PRTs 3 and 8 were the most com-
mon, featuring in all four populations and being repre-
sented by 5–11 % of all isolates. PRTs 15, 14, 13, and 4
were the next most common PRTs, each featuring in three
of the four populations (Table 2). MLST analysis (http://
pubmlst.org/hinfluenzae/) of at least one representative
isolate of the six dominant PRTs in Study 1 and 2 found
that all sequence types were described from the United
States and Europe, with the exception of isolates repre-
senting PRTs 27, 34, and one isolate of PRT 8.
Principal coordinates analysis (PCoA) was used to

visualise the PRT distribution among the four study co-
horts. This analysis showed a dominant cluster of PRTs
common to all studies (Fig. 1), thereby supporting the
absence of geographic or population-specific clustering
of NTHi PRTs. The highest number of PRTs was de-
tected in Study 1. Higher dispersion of PRTs across
PCO1 and PCO2 for Studies 1–2 (compared to Studies
3–4) reflects the increased number of PRTs unique to
Studies 1–2. For Study 1, this finding likely represents
the large sample (2179 NTHi isolates). However, for
Study 2, this finding likely reflects the larger number of
strains dominating in this population, which may result
from the high NTHi carriage rates (85 %) in this cohort
or its broader geographic sampling (16 remote commu-
nities). This finding could also reflect a difference in dis-
ease state (all children had a diagnosis of AOM), though
we previously showed that NTHi from paired nasopha-
ryngeal and ear discharge swabs from children with

http://pubmlst.org/hinfluenzae/
http://pubmlst.org/hinfluenzae/


Table 2 The 6 dominant non-typeable Haemophilus influenzae PCR-ribotypes (PRTs) in 4 populations of Australian children

Fig. 1 Principal coordinates analysis (PCoA) visualising the similarity of PCR-ribotype (PRT) distributions between the 4 studies. Each circle indicates
a PRT; the size of the circle is proportional to the number of isolates. Plots show the PRT data cloud for the 4 studies. Each figure was derived
from the same PCoA and thus positional differences between the data clouds indicate differences in PRT distribution. Bubbles occurring in the
same location across PCO1 (X-axis) and PCO2 (Y-axis) indicate PRTs that were common to the different studies. The vector plot shows directional
effects of the PRT distribution from each study
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Fig. 2 Rarefaction plot demonstrating the cumulative number of new non-typeable Haemophilus influenzae (NTHi) PRTs identified versus number
of NTHi isolates typed for each study. PRT, PCR-ribotype. #Only unique isolates from each swab included
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AOM with perforation were generally the same PRT
(unpublished observations).
Analysis of these four diverse cohorts provided an op-

portunity to assess our sampling strategy for efficient
surveillance of NTHi diversity within a population.
Figure 2 shows the cumulative number of novel PRTs
identified in each cohort against the number of NTHi
isolates genotyped, irrespective of study duration. Stud-
ies 2, 3, and 4 followed a similar trajectory, in which
13–34 PRTs per 100 unique isolates were identified
(Table 1). Study 2 was a 3-year study of 320 Aboriginal
children up to 6 years of age, with NTHi carriage rates
of up to 85 % at baseline; each child was swabbed up to
three times over several weeks. Study 3 was a 6-year
study of 100 Aboriginal children up to 2 years of age
with a 36.3 % NTHi carriage rate; each child was
swabbed up to 7 times over a 2-year period. Study 4
was the non-Aboriginal cohort of 180 children from
Study 3 with a 9.4 % NTHi carriage rate. In contrast,
Study 1 identified 4 PRTs per 100 isolates during a 6-
month study of 456 non-Aboriginal children up to
4 years of age with an approximately 50 % NTHi car-
riage rate; each child was swabbed fortnightly. We have
shown that low numbers of swabs with relatively low
NTHi carriage (Study 3) collected less frequently and
over a longer period can provide comparable informa-
tion to intense, shorter studies such as Study 1.
Another carriage study design question relates to the

number of isolates selected for analysis from each swab.
Multiple NTHi genotypes during carriage have previ-
ously been observed and modelled [18]; however, the
value of assessing multiple strain carriage in different
populations is not well understood. In Studies 1–2
where additional colonies were selected only if morpho-
logically distinct, multiple PRT carriage was detected in
8 and 17 % of swabs, respectively. For Studies 3–4 where
2 colonies were selected as per protocol, including any
that were morphologically distinct, multiple PRT car-
riage was detected in 20 and 7 % of swabs, respectively.
Although our data cannot inform the most appropriate
number of colonies to select per specimen for measuring
multiple PRT carriage, nor the method of selection, it is
likely that these methods would vary by population. In-
deed, the value of typing additional colonies appears to
be greater for populations with high carriage rates.
In conclusion, analysis of NTHi nasopharyngeal carriage

PRTs in four cohorts with varying NTHi colonisation rates
allowed us to identify dominant genotypes common to
four Australian paediatric populations. More than 3000
isolates from three distinct urban and remote geographic
regions in Australia (Kalgoorlie in southern Western
Australia, the urban Darwin region of the Northern Terri-
tory, and several remote communities across the Northern
Territory) were examined. This finding provides an oppor-
tunity to study the factors conferring an advantage to the
dominant PRTs in NTHi nasopharyngeal carriage, thereby
advancing our understanding of the constraints that sup-
port NTHi population structure. Continued efforts to
understand NTHi population dynamics will improve the
identification of useful vaccine candidates for targeting
universal or dominant strains, and may inform models of
the potential efficacy of NTHi vaccines in current and fu-
ture production pipelines. Further characterisation of car-
riage- and disease-related (acute [e.g. pneumonia] and
chronic [e.g. bronchiectasis]) NTHi populations by whole
genome sequencing or other genotyping means is neces-
sary to determine the relevance of carriage versus disease
genotype frequency, and may shed light on the factors
supporting dominance of certain NTHi genotypes. Al-
though the Australian experience may not necessarily apply
elsewhere, whole genome sequence data from Australian
and international NTHi isolates have (to date) demon-
strated a level of core genome similarity between global
and Australian NTHi populations [8]. Thus, we expect our
findings to be applicable to other study settings.
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