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Anatomical site-specific contributions
of pneumococcal virulence determinants
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Abstract

Streptococcus pneumoniae is an opportunistic pathogen globally associated with significant morbidity and mortality. It is
capable of causing a wide range of diseases including sinusitis, conjunctivitis, otitis media, pneumonia, bacteraemia,
sepsis, and meningitis. While its capsular polysaccharide is indispensible for invasive disease, and opsonising antibodies
against the capsule are the basis for the current vaccines, a long history of biomedical research indicates that other
components of this Gram-positive bacterium are also critical for virulence. Herein we review the contribution of
pneumococcal virulence determinants to survival and persistence in the context of distinct anatomical sites. We discuss
how these determinants allow the pneumococcus to evade mucociliary clearance during colonisation, establish lower
respiratory tract infection, resist complement deposition and opsonophagocytosis in the bloodstream, and invade
secondary tissues such as the central nervous system leading to meningitis. We do so in a manner that highlights both
the critical role of the capsular polysaccharide and the accompanying and necessary protein determinants. Understanding
the complex interplay between host and pathogen is necessary to find new ways to prevent pneumococcal infection.
This review is an attempt to do so with consideration for the latest research findings.
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Background
Streptococcus pneumoniae (pneumococcus) is a Gram-
positive, lancet-shaped bacterium that has diplococci
morphology, is typically encapsulated, and is non-motile.
In most instances S. pneumoniae resides asymptomati-
cally in the nasopharynx of healthy individuals [1]. Yet
this opportunistic pathogen is associated with devastat-
ing morbidity and mortality in vulnerable populations
such as young children, the elderly, and those who are
immunocompromised [2, 3]. S. pneumoniae is capable of
causing a myriad of diseases including sinusitis, conjunc-
tivitis, otitis media, and pneumonia, also invasive dis-
eases such as bacteraemia, sepsis, and meningitis [1, 2].
Worldwide, it is the leading cause of death in young
children and of infectious death in the elderly [3, 4]. Al-
though the incidence of disease that develops in carriers
is generally low, the vast numbers of colonised individ-
uals make S. pneumoniae a major burden with signifi-
cant socio-economic costs. For all these reasons, efforts
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to create a viable vaccine against S. pneumoniae date
back as far as 1911 [5].
S. pneumoniae virulence determinants can be divided

into 3 categories: capsule, cytotoxic products, and sur-
face proteins. The extracellular capsule is a structure of
complex sugars that surround the bacteria and form a
protective barrier. On the basis of the biochemical com-
position and the serology of the polysaccharide,
pneumococci are classified into 97 distinct capsular se-
rotypes [6]. The capsule allows the pneumococcus to
evade mucociliary clearance, complement deposition,
and opsonophagocytosis [7, 8]. A critical role for the
capsule is highlighted by the fact that antibodies specific
to a capsule type are highly protective against invasive
pneumococcal disease by strains belonging to the same
serotype [9, 10]. As such, development of antibodies
against the capsule is the basis of the current vaccines
that are composed of polysaccharides conjugated to pro-
tein, and the older vaccine formulations that were com-
posed solely of purified capsular polysaccharides [11].
Importantly, extensive epidemiological evidence suggests
that pneumococci belonging to different serotypes vary
in their prevalence and propensity to cause invasive
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disease. Isolates belonging to serotypes 6A, 6B, 19F, and
23F were found to be more prevalent colonisers of chil-
dren younger than 5 years of age, while isolates belong-
ing to serotypes 3, 9, and 23F were more common in
adolescents and adults before the introduction of the
first conjugate vaccine [12, 13]. On the contrary, sero-
types 1, 4, 5, and 7F (which are known to be more inva-
sive) colonise the population to a lesser degree [14, 15].
The current conjugated vaccines are composed of the
polysaccharides that are most commonly carried by
strains that cause the bulk of disease in humans.
It is important to note that the introduction of the 7-

valent pneumococcal conjugate vaccine (PCV7) covering
serotypes 4, 6B, 9 V, 14 18C, 19F, and 23F in the year 2000
reduced the incidence of invasive pneumococcal disease
(IPD) in children of countries that implemented the vac-
cine [10, 16–19]. Yet, PCV7 had only a modest effect in
reducing the incidence of otitis media caused by the
PCV7-covered pneumococcal serotypes [20]. Moreover,
there has been a rise in the incidences of infections caused
by non-PCV7-covered serotypes [21, 22], a phenomenon
known as serotype replacement. To address this problem,
a 13-valent pneumococcal conjugate vaccine (PCV13)
covering 6 additional serotypes (1, 3, 5, 6A, 7F, and 19A)
was introduced in 2010. Despite the elevated effectiveness
of PCV13, reports of continued serotype replacement by
non-PCV13 pneumococcal serotypes have been docu-
mented [23, 24]. Recently, a 15-valent pneumococcal con-
jugate vaccine containing the serotypes in PCV13 and an
additional 2 serotypes (22F and 33F) has been developed
to address this shift and further curb pneumococcal car-
riage and invasive disease [25]. Importantly, recent epi-
demiological studies suggest there is also a rise in the
number of individuals colonised with non-encapsulated S.
pneumoniae [26]. This is presumably driven by both vac-
cine and antibiotic selective pressures, although increased
sensitivity in our detection methods may account for in-
creasing numbers. The importance of these non-
encapsulated strains to human health is an open question.
What is more, their impact may be indirect, for example
they may act as a reservoir of antibiotic resistance genes
for encapsulated strains [27].
The capsule by itself cannot be signed off as the sole

virulence determinant responsible for human disease.
More than 60 years of evidence suggests that the toxin
pneumolysin (Ply) and diverse surface proteins are in-
volved in tissue damage, modulation of the host re-
sponse, immune evasion, and adhesion and invasion of
cells and tissues [28, 29]. This requirement for non-
capsular determinants is reinforced by observations that
show: (i) isogenic capsule serotype-switching does not
always confer virulence [30]; (ii) clinical isolates of S.
pneumoniae belonging to the same serotype vary in their
ability to cause disease [31]; and (iii) isogenic deletion of
protein determinants can drastically attenuate the ability of
S. pneumoniae to progress from one anatomical site to the
next [32]. When considering all of these factors together,
one must conclude that pneumococcal virulence is the re-
sult of the right combination of capsule, cytotoxic factors
produced, and surface protein virulence determinants.
This review will discuss how different pneumococcal

determinants impact the disease progression in an ana-
tomically site-specific manner. To understand the mech-
anisms of pneumococcal evasion of the immune system
it is necessary to understand anti-pneumococcal mecha-
nisms of innate and adaptive immunity in the host.

Pneumococcal colonisation of the respiratory
mucosa
The role of the pneumococcal capsule in persistence
within the respiratory mucosa
S. pneumoniae transmission between individuals occurs
via aerosolised droplets that are inhaled and via pneumo-
coccus contaminated fomites that introduce the bacteria
to the oropharynx (e.g., saliva coated toys in daycare set-
tings). As such, the dominant mechanisms of defense
against the pneumococcus include the physical barrier
formed by the mucosal surface of the respiratory tract, sol-
uble antibacterial components present in the mucus, and
the innate and adaptive immune cells residing in the mu-
cosal linings. To counter bacterial adherence and colon-
isation of the nasopharyngeal epithelia, the negatively
charged mucus layer of epithelial lining forms the first line
of defense. Pneumococci have evolved different degrees of
negatively charged capsules to evade entrapment and
mucus-dependent clearance [8]. With the exception of se-
rotypes 7A, 7F, 14, 33F, and 37, all pneumococcal capsules
with known biochemical structure possess a net negative
charge [33]. The capsular negative charge electrostati-
cally repels phagocytic macrophages and neutrophils
that are also negatively charged, and sterically inhibits
receptor ligand interactions with pneumococcal surface
components [34, 35]. The importance of the net capsu-
lar charge is best evidenced by the observation that the
serotypes that possess the greatest negative charge are
those that exhibit the highest carriage prevalence in hu-
man populations [34].

Resistance to anti-microbial secretions
The respiratory tract epithelial lining secretes lactoferrin,
various cationic antimicrobial peptides (AMPs), and
lysozyme with anti-pneumococcal activity [36, 37].
Lactoferrin sequesters the iron necessary for bacterial
metabolism, hence exerting its antimicrobial activity
[36]. Lysozyme enzymatically hydrolyses the conserved
β-1,4-glycosidic bonds between N-acetylglucosamine
and N-acetylmuramic acid, the disaccharide building
blocks of the peptidoglycan backbone of Gram-positive
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bacteria. To evade cationic AMP-mediated killing, S.
pneumoniae has been shown to incorporate D-alanine in
its cell wall techoic acid component to reduce cell sur-
face negative charge [38]. Most pneumococci express
the serine protease PrtA that cleaves human apolactofer-
rin (the iron-free form of lactoferrin). This yields a very
potent bactericide called lactoferricin. Clones of S. pneu-
moniae capsular serotypes 2 and 19F strains with muta-
tions in the prtA gene, have demonstrated a loss of their
ability to convert apolactoferrin to lactoferricin render-
ing them resistant to lactoferrin killing [37]. Pneumococ-
cal surface protein A (PspA), a choline-binding protein,
binds to the active site of apolactoferrin through electro-
static interactions thus sequestering it and blocking
apolactoferrin-mediated bacterial killing [39, 40]. Two
enzymes—PdgA, a N-acetylglucosamine deacetylase and
Adr, an O-acetyl transferase—have been shown to mod-
ify the pneumococcal cell wall making it resistant to
lysozyme-mediated degradation [41].
Nasopharyngeal secretions are also rich in secretory

immunoglobulin A (sIgA), which bind to and aggregate
pneumococci [42]. This facilitates their opsonisation and
promotes phagocytosis; it also anchors the bacteria in
the mucus for mechanical clearance [43]. Pneumococci
have evolved an IgA1 protease enzyme, which cleaves
the sIgA at its hinge region abrogating the sIgA-
mediated aggregation, thus allowing individual pneumo-
cocci to block their aggregation and entrapment within
mucous and gain access and colonise the underlying
nasopharyngeal mucosa [44].

Pneumococcal adhesins during colonisation
While the capsule is required for virulence, it also nega-
tively impacts the ability of pneumococci to adhere to
mucosal epithelial cells [45]. This has been attributed to
net charge as well as the reduced opportunity of bacter-
ial adhesins to interact with their ligands on the host cell
surface. To address this, pneumococci have been dem-
onstrated to alter capsule expression levels in response
to environmental cues such as oxygen availability, as
well as in a stochastic manner via phase variation [46].
Pneumococci within the nasopharynx of colonised ani-
mals tend to belong to the transparent phenotype
whereby they express lower levels of capsule and higher
levels of certain cell surface adhesins like choline-
binding protein A (CbpA) [46, 47]. In contrast, pneumo-
cocci isolated from the blood tend to belong to the
opaque phenotype (and express more capsule), which is
an inhibitor to adhesion but protects against opsonopha-
gocytic killing [48]. The role of phenotype switching is
discussed in greater detail below.
The ability to adhere to host cells results from the

collective contribution of diverse surface proteins that
include choline-binding proteins and microbial surface
components recognising adhesive matrix molecules
(MSCRAMMS) [49]. CbpA, also referred to as PspC,
binds to the polymeric immunoglobulin receptor (pIgR)
and laminin receptor (LR), while pneumococcal cell wall
phosphorylcholine (ChoP) binds to platelet-activating
factor receptor (PAFR) on the host cell surface allowing
attachment and subsequent transcytosis to breach the host
respiratory epithelial barrier [42, 50–52]. Other choline-
binding proteins play roles in adhesion but also evasion of
the host defense (discussed below), autolysis, fratricide,
and decoration of the cell surface with ChoP [53, 54].
Mutants deficient in these proteins have been demon-
strated to be less fit and avirulent in comparison to the
wild type [55].
The extracellular matrix components present in the

airways also serve as attachment ligands for pneumo-
cocci. These are targeted by MSCRAMMS. For example,
pili are multi-subunit surface structures that enhance
pneumococcal adherence to collagen I, fibronectin, and
laminin [56]. Pilus islet-1 (PI-1) encodes RrgA, RrgB,
and RrgC, which together make up the stalk and tip of
the pilus in pneumococci [56, 57]. The adhesive pili tip,
composed of RrgA, mediates binding to the host respira-
tory epithelium and modulates tissue invasion [56, 58].
Certain S. pneumoniae serotypes, for example serotypes
1, 2, 7 F, 19A and 19F, which are considered to be the
emerging serotypes in industrialised and developing
countries, have been found to express an alternative pi-
lus islet-2 (PI-2) [59]. PI-2 further enhances adherence
to host cells [59]. Pneumococcal adhesion and virulence
proteins PavA and PavB are also MSCRAMMs that bind
to fibronectin glycoproteins on epithelial cells facilitating
nasopharyngeal colonisation and persistence [60, 61].
Bound extracellular matrix components not only serve
as anchors for the pneumococcus in the nasopharynx,
but also presumably as bridging molecules between
pneumococci, thereby allowing for bacterial microcolo-
nies or biofilms to develop [62].
S. pneumoniae also expresses carbohydrate-active en-

zymes (CAZymes) such as neuraminidase A (NanA), beta-
galactosidase (BgaA), and beta-N-acetylgucosaminidase
(StrH) that can modify a wide range of host glycans in the
mucus, liquefying it to prevent entrapment [63, 64]. These
exoglycosidases also liberate terminal monosaccharides
such as sialic acid, galactose and N-acetylglucosamine, re-
spectively, from the host cell surface. This is thought to
promote the adherence of S. pneumoniae by exposing
cryptic binding sites (e.g., N-Acetyl-D-Galactosamine) on
the epithelial surface and the released monosaccharides
serve as a carbon source to sustain growth [63, 65]. To
further aid effective colonisation, pneumococci have also
been implicated in inducing actin cytoskeleton disorgan-
isation and disrupting the respiratory epithelial architec-
ture, resulting in a loss of efficient mucociliary clearance
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[66]. Ply has also been shown to inhibit ciliary function and
cause considerable cell damage [67]. Other virulence fac-
tors such as hydrogen peroxide produced by SpxB
(pneumococcal pyruvate oxidase), hyaluronate lyase, and
secreted metalloproteases augment the Ply-mediated injury
to the human respiratory epithelium [68, 69]. Tissue in-
flammation increases the expression of known pneumococ-
cal ligands such as pIgR, LR, and PAFR [70]. A new and
important adhesin is PspK. The gene encoding PspK is
found in place of the capsule operon. PspK has been impli-
cated in otitis media caused by unencapsulated S. pneumo-
niae [71, 72]. Other proteins, such as enolase, that are
normally thought to be intracellular housekeeping proteins,
have been demonstrated to have important adhesin and im-
mune system evading properties [73, 74]. A comprehensive
review focused on pneumococcal adhesins and their pos-
sible use as novel vaccine antigens is available [75].

Pneumococcal biofilms
Persistent nasopharyngeal colonisation and middle ear
infection by S. pneumoniae is now known to involve bio-
films [76, 77]. Biofilms are surface attached microbial
communities encased within an extracellular matrix
made up of complex carbohydrates, proteins and nucleic
acids [78]. In vitro and in vivo S. pneumoniae within bio-
films are predominantly in the transparent phenotype
with a low-capsule and high cell wall techoic acid ex-
pression aiding in strong adhesion properties to host
cells [46, 79]. Numerous pneumococcal proteins includ-
ing NanA, LytA and SpxB have been associated with
biofilm formation [80, 81]. In vitro, hydrogen peroxide
produced by SpxB induces mutations in the capsule-
encoding operon, resulting in pneumococcal variants
with little to no capsule [82]. Whether this occurs
in vivo is not known. SpxB-deficient mutants are, how-
ever, more encapsulated than wild-type S. pneumoniae
[83]. As indicated earlier, transparent pneumococci in
biofilms express elevated levels of certain adhesins such
as CbpA, factors that modify host surface such as NanA,
and lower levels of Ply [47]. The pneumococcal serine-
rich repeat protein (PsrP) has also been documented to
be up-regulated in biofilms [47]. PsrP permits pneumo-
coccal adhesion to cytokeratin 10 on lung epithelial cells
but also mediates intra-species pneumococcal tethering
that facilitates the formation of biofilms [84, 85]. The
fact that pneumococci colonising the nasopharynx
asymptomatically (presumably within biofilms) are less
capsulated with a higher-level expression of adhesin pro-
teins suggests a very complicated interplay between vari-
ous pneumococcal virulence determinants, one that is
only in part mediated by phase variation. Of note, con-
siderable evidence suggests that pneumococci within
biofilms modulate virulence gene expression and are less
invasive than their planktonic counterparts [47]. This
suggests S. pneumoniae suppresses its virulence to pro-
mote asymptomatic carriage.

Otitis media
Otitis media or middle ear infection is one of the most
common paediatric infections [12]. It is responsible for a
tremendous socioeconomic burden in the form of hos-
pital visits, surgical intervention, antibiotic therapy, and
repeated infections may have long-lasting consequences
such as hearing and speech impairment [86, 87]. One of
the major difficulties with treatment of otitis media is
the rising incidence of persistent and recurrent middle
ear infection despite antibiotic therapy [88, 89]. S. pneu-
moniae is among the leading causes of such recurrent
and persistent otitis media [90], with biofilm formation
thought to play an important role [91, 92]. Although
pneumococcal conjugate vaccines (PCV7/PCV13) have
had considerable success in reducing the incidences of
IPD, they have achieved only modest success with re-
spect to the prevention of otitis media [93]. Epidemio-
logical reports also suggest increasing prevalence of otitis
media infections caused by non-encapsulated S. pneumo-
niae strains in vulnerable populations [26]. Antibiotic
therapy is the most accepted mode of treatment for otitis
media. However, persistent otitis media resistant to anti-
microbial therapy is increasingly observed in humans and
has been replicated as experimental models [94–96].
S. pneumoniae isolated from the middle ear of children

with otitis media showed phase variation with a predom-
inant tendency to possess an opaque phenotype, suggest-
ing a different form of selection within the middle ear
niche compared to the nasopharynx [97]. S. pneumoniae
isolates from patients with otitis media were found to ex-
press MSCRAMMs such as pili (both PI-1 and PI-2), in
addition to PspA, CbpA, and PcpA, and NanA [91, 98,
99]. Otitis media isolates showed enhanced adhesive abil-
ities irrespective of their capsular serotype [99, 100].
Pneumococcal CAZymes such as NanA have also been
shown to play a major role during middle ear biofilm for-
mation wherein they liberate sialic acid residues from the
tubotympanum of the experimentally challenged chin-
chillas and expose the underlying N-acetylglucosamine
residues as potential attachment sites [101]. Pneumococ-
cal autolysin and Ply have been implicated to play a role in
pneumococcal pathogenesis of otitis media, which is char-
acterised by neutrophil infiltration in the middle ear [102].
This Ply-mediated cytotoxicity is thought to explain the loss
of outer hair cells within the ear cochlea and associated
sensorineural hearing impairment following middle ear in-
fection by S. pneumoniae [103]. Finally, it is now recognised
that host innate and adaptive immune responses also play a
major role in predisposing individuals to pneumococcal
middle ear infection. Deficiencies in lysozyme M se-
cretion, complement pathway activation, and mucosal
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antibody production have all been reported to increase
susceptibility to otitis media [104–106]. In instances
where otitis media is caused by unencapsulated S. pneu-
moniae strains, PspK seems to be a major determinant. In
a chinchilla infection model, PspK has been shown to be
important for progression of infection from the nasophar-
ynx to middle ear [72].

Host pathogen interactions involving innate immune
mechanisms
The respiratory tract epithelium is home to resident
macrophages and other immune cells that exert anti-
bacterial activities [107]. Macrophages in the respiratory
mucosa and monocytes and/or neutrophils that enter
from the systemic circulation play the role of dominant
effectors against pneumococcal infection, thus determin-
ing if the invading pneumococci can establish infection
or are cleared without pathological consequences [108].
Clearance by macrophages is almost always effective;
when this is not the case pneumonia develops and neu-
trophils are recruited to the airways.
One class of receptors that play an important role in

macrophage surveillance against pneumococcal infection
is scavenger receptors [109–111]. Scavenger receptors can
function as pattern recognition receptors (PRRs) against
bacterial pathogens and their activation induces a phago-
cytic response towards the microbes, even in the absence
of their opsonisation [111]. The class A macrophage scav-
enger receptors (SRAs) can recognise the Gram-positive
bacterial cell wall component lipotechoic acid and
unmethylated CpG nucleotide sequences in bacterial
DNA (CpG DNA) [112, 113]. They also function as co-
receptors to Toll-like receptors (TLRs) such as TLR2 and
Nod2, allowing a positive reinforcement to the innate in-
flammatory response to pneumococcal colonisation [111,
114]. SRAs (namely SRA-I/II and macrophage receptor
with collagenous structure [MARCO]) expressed on the
alveolar macrophages have been in implicated in anti-
pneumococcal immunity [115, 116]. This was emphasised
by increased susceptibility of mice lacking either of these
receptors towards pneumococcal infection and associated
pneumonic inflammation [109, 110].
Efficient pneumococcal clearance by macrophages first

requires their activation in response to S. pneumoniae
[117]. PRRs—such as TLR2, which recognises lipopro-
teins and lipotechoic acids in the pneumococcal cell
wall; TLR4, which recognises Ply; TLR9, which recog-
nises CpG DNA; and Nod2, which detects lysozyme
digested peptidoglycans within the cytoplasm—have
been found to contribute to macrophage activation and
inflammatory response against pneumococci [118, 119].
Activation of macrophages via PRRs enhances phagocyt-
osis, respiratory burst, major histocompatibility complex
class II expression, and increases secretion of pro-
inflammatory T helper (Th)1 and Th17 polarising cyto-
kines like interleukin (IL)-8/killer cells (KC), granulocyte
colony stimulating factor (G-CSF), macrophage chemo-
attractant protein-1, tumor necrosis factor alpha (TNF-
α), interferon gamma (IFN-γ), IL-6, and IL-1α [120]. All
these cytokines play a major role in orchestrating the
host immune defense against pneumococci. While IL-8/
KC and G-CSF are involved in neutrophil recruitment
and activation, TNF-α and IFN-γ stimulates the Th1 and
Th17 T cell lineages [121, 122]. IL-1α plays a vital role
in T-cell expansion and survival [123, 124].
Ply also stimulates the Nod-like receptor NLRP3, thus

activating the inflammasome complex, which results in
secretion of the active forms of proinflammatory cyto-
kines IL-1β, and IL-18 [125, 126]. Of note, clinical iso-
lates of S. pneumoniae serotypes 1, 8, and 7F are
associated with increased virulence despite reduced Ply
activity due to their ability to evade NLRP3-mediated ac-
tivation of the immune system [126]. Ply is also able to
activate the classical complement cascade by binding to
IgG, and in sufficient concentrations is able to kill cells
directly [127]. The latter is through pore-formation-
mediated loss of osmotic regulation, leading to cell lysis,
but now also understood to be the result of both pyrop-
tosis- and necroptosis-mediated killing at lower concen-
trations [128, 129]. Ply has also been implicated as being
capable of killing phagocytic cells through rupture of the
lysosome, once engulfed [130, 131]. Thus Ply is respon-
sible for the subversion of the innate immune response
against pneumococci by initiating macrophage, neutro-
phil and dendritic cell death [131, 132].
Successful nasopharyngeal colonisation by S. pneumo-

niae and Ply-mediated pore formation on epithelial cells
exerts osmotic stress that activates p38 mitogen-
activated protein kinase (p38 MAPK) signaling cascade
[133]. This results in increased chemokine expression
and the influx of neutrophils [8, 121]. Recruited neutro-
phils engulf and kill the bacteria by fusion of their anti-
microbial granules with the phagosome. These
phagosomes contain many reactive oxygen species and
AMPs that can also be released by neutrophilic degranu-
lation. Neutrophil-mediated killing is also enhanced by
the pneumococcal capsule which sensitises the encapsu-
lated bacteria to human neutrophil proteins 1 to 3 of the
alpha defensin subfamily of AMPs exclusively produced
by neutrophils [134, 135]. In addition to this, neutrophils
on activation are also capable of releasing their chroma-
tin DNA, which is bound to antimicrobial components
like histones, elastase, myeloperoxidase, and lactoferrins
that together form extracellular fibres called neutrophil
extracellular traps (NETs) [136, 137]. Pneumococci
trapped within the NETs escape using a membrane-
bound surface endonuclease, EndA [138]. Pneumococci
have also evolved alternative mechanisms for resistance
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to NET-mediated killing wherein they add D-alanine res-
idues to their cell wall lipotechoic acid structure, thus
gaining a positive charge that helps them electrostati-
cally repel NET entrapment [139]. S. pneumoniae be-
longing to serotypes 1, 2, 4, and 9V possess capsules that
further protect them against entrapment and killing me-
diated by NETs [139]. It is worth noting that excessive
tissue inflammation and prolonged neutrophil infiltra-
tion is detrimental to the host and may permit the bac-
teria to escape from the lungs into the bloodstream
[140, 141]. Thus neutrophils, despite being required for
bacterial clearance, also enhance tissue destruction and
indirectly facilitate pneumococcal dissemination into the
circulation. The host must strike a careful balance be-
tween an insufficient and excessive immune response.

Anti-pneumococcal adaptive immune mechanisms
Optimal host-mediated opsonophagocytic killing of S.
pneumoniae involves both innate and adaptive immune
mechanisms with complement and serotype-specific anti-
bodies together providing the basis for strong anti-
pneumococcal immunity. The fact that mice lacking CD8+
T cells were fully protected from pneumococcal challenge
of any serotype but mice deficient in CD4+ T cells were not
capable of clearing pneumococcal infection despite normal
innate immune function highlights that the pneumococcus
is an extracellular pathogen, and that there is a requirement
for an adaptive response [142]. CD4+ T cells have been
shown to migrate into the lungs early after intranasal chal-
lenge with S. pneumoniae in a Ply-dependent manner [143,
144]. Importantly, mice lacking 1L-17A receptors were not
protected against subsequent pneumococcal colonisation,
suggesting an important role for 1L-17A and thus the Th17
subset of CD4+ T cells in anti-pneumococcal acquired im-
munity [145]. IL-17A response to pneumococcal challenge
efficiently recruits neutrophils and monocyte/macrophages
into the airway lumen to further enhance the pneumococ-
cal clearance [145, 146]. These observations were also reca-
pitulated in experimental human pneumococcal carriage
studies where carriage resulted in an increased number of
Th17 cells in the airway lumen and enhancement in al-
veolar macrophage-mediated pneumococcal killing
[147]. In addition to recruiting neutrophils via IL-17A,
T cells have also been shown to modulate the antibody
response against pneumococci forming an important
link between the innate and adaptive immunity to S.
pneumoniae [148, 149].

Systemic pneumococcal infection
Pneumococcal invasion of epithelial cells and
endothelial cells
Pneumococci are capable of gaining entry into systemic
circulation by translocation across respiratory epithelium
and endothelial cells using two major mechanisms:
intracellular migration and inter- or paracellular migra-
tion. ChoP acts as a molecular mimic of platelet-activating
factor (PAF) and binds to PAFR on activated epithelial
and endothelial cells, providing the bacterium with access
via the PAFR recycling pathway [51]. This requires simul-
taneous interaction of CbpA with the LR [52], and allows
pneumococcal migration to the basal membrane of host
cell within vacuoles [51, 150]. Furthermore, CbpA also
binds to the extracellular region of pIgR on the epithelial
cell surface [42, 50]. This CbpA-pIgR interaction allows
the pneumococcus to co-opt to the pIgR recycling path-
way, and results in pneumococcal translocation within a
vacuole towards the basal membrane of the epithelial cells
[42, 151]. Of note, a study using 20 capsule-switched vari-
ants of S. pneumoniae TIGR4 strain found that successful
pneumococcal invasion was highly dependent on the right
combination of capsular serotype and CbpA, which to-
gether conferred resistance to complement recruitment
and activation resultantly abrogating neutrophil opsono-
phagocytosis [152].
Inter- or paracellular migration of pneumococci across

the epithelial and endothelial respiratory barrier can
occur in two ways. Pneumococcus-bound plasminogen
enhances pneumococcal adhesion to epithelial cells and
endothelial cells, leading to cleavage of the intercellular
cadherin junctions and allowing intercellular migration
of pneumococci [153]. The recognition of pneumococcal
cell wall lipotechoic acids by TLR2 is also shown to in-
duce loss of epithelial barrier polarity by activation of
p38 MAPK and transforming growth factor beta path-
ways, further promoting invasion [154]. Ply-mediated
damage to the tissue barrier can also facilitate pneumo-
coccal entry into the systemic circulation, enhancing in-
vasion [67]. An important role for paracellular invasion
has been demonstrated by the testing of type I interferon
knockout mice that do not up-regulate tight junctions in
response to bacterial infections. These mice developed
bacteraemia at a rate considerably higher than their
wild-type controls [155].

Resistance to complement activation
Within the consolidated lungs and once pneumococci
enter the bloodstream they are faced with a wide barrage
of antibacterial host defense mechanisms. Typically, the
innate immune mechanisms composed of the comple-
ment system, C-reactive proteins (CRPs), and phagocytic
cells such as neutrophils and macrophages are considered
to be of primary importance. The importance of comple-
ment systems in protection against pneumococcal infec-
tion is evidenced from the high susceptibility of mice and
humans to pneumococcal infections when certain comple-
ment components are experimentally depleted or genetic-
ally deficient [156, 157]. Activation of the complement
system involves recognition of specific molecular patterns
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on pathogens, a cascade of proteolytic cleavage involving
several complement factors followed by bacterial killing,
either by recruitment of the membrane attack complex or
by opsonophagocytosis [158].
The complement system is comprised of 3 cascade

pathways: the classical complement pathway, the alterna-
tive complement pathway, and the lectin-induced comple-
ment pathway. Naturally produced IgM specific against
pneumococcal techoic acid and acute phase proteins (such
as CRPs directed against ChoP in the pneumococcal cell
wall) initiates complement subcomponent C1q deposition
on the bacteria, inducing the classical complement path-
way [159, 160]. The alternative complement pathway is in-
duced against pneumococci by the direct interaction of
the complement C3 with the pneumococcal cell wall,
leading to C3b deposition on the bacterial surface [161,
162]. The lectin-induced complement pathway plays a less
vital but still important role in protection against pneumo-
coccal disease. Among the various lectins such as
mannan-binding lectin, H-, L-, and M-ficolin, only L-
ficolin and M-ficolin were found to activate the alternative
complement cascade against the pneumococci. While L-
ficolin bound to 3 capsulated S. pneumoniae serotypes
(11A, 11D, and 11F) and ChoP moieties of the pneumo-
coccal cell wall [163], M-ficolin bound to the extra N-
acetylmannosamine residue linked via glycoside linkage
within the capsules of 2 strains of S. pneumoniae serotype
19 (19B and 19C) [164]. Activation of the C1q by the clas-
sical or lectin-induced complement cascades leads to
cleavage and activation of complement component C2,
which then in combination with the activated fragment of
C4 elicits C3b deposition [158]. Deposition of comple-
ments and CRPs enhances phagocytosis and induces cyto-
kine production by immune cells [165, 166]. Splenic and
liver resident macrophages have been reported to play a
role in pneumococcal killing within systemic circulation
and thus dampening the spread of bacteraemia [167].
The pneumococcal capsule blocks complement-mediated

opsonophagocytosis by impairing the efficient binding of
complement components on the bacterial surface, prevent-
ing proteolytic conversion of C3b to iC3b, and masking the
cell-bound complements, thus hampering access of phago-
cytes to the opsonising complements [7]. The contribution
of capsular serotypes in pneumococcal resistance to com-
plements was reaffirmed when capsular serotype-switched
S. pneumoniae TIGR4 background mutants showed differ-
ent levels of susceptibility towards complement mediated
opsonisation [168]. While capsular serotypes 6A and 23F
strains on TIGR4 background showed more predisposition
towards C3b/iC3b deposition and neutrophil phagocytosis,
the capsular serotypes 4 and 7F strains on TIGR4 back-
ground showed resistance towards complement-mediated
immunity and were more virulent in a mouse model of sep-
sis [168]. Additionally, pneumococci express a number of
cell surface proteins that limit opsonisation-mediated kill-
ing. CbpA is capable of inhibiting opsonisation-mediated
killing by binding and activating the complement regulatory
protein factor H and thus inhibiting the alternative and lec-
tin pathways [169], in addition to binding C4-binding pro-
tein and inhibiting the classical complement pathway [170].
However, the contribution of CbpA-mediated inhibition of
complement cascade to pneumococcal infections is highly
strain dependent. While CbpA deletion abrogated the viru-
lence of S. pneumoniae serotype 4 strain TIGR4, the viru-
lence of serotypes 2, 3, and 19F strains remained unaffected
[171]. Isogenic capsule-switched strains on S. pneumoniae
TIGR4 background showed large increases in deposition of
factor C3b/iC3b on capsule-switched serotypes 4, 6A, 6B,
and 9 V strains, but no significant difference in deposition
on serotypes 2, 3, 17, and 23F strains [172]. This further
bolstered the notion that pneumococcal virulence is medi-
ated by a complex interplay between capsule and protein
virulence determinants.
PspA is a key pneumococcal surface protein that in-

hibits C3 binding on the surface of S. pneumoniae,
avoiding complement-mediated opsonophagocytosis
(Fig. 1) [173, 174]. PspA and PspC work synergistic-
ally to reduce this complement-mediated immune ad-
herence and permit pneumococcal persistence in
circulation [175] while PhpA is a surface-expressed
protein capable of degrading C3 [176, 177]. As indi-
cated previously, Ply is known to inhibit complement-
mediated pneumococcal clearance by binding to the
Fc portion of IgG, thus activating the classical com-
plement pathway and sequestering complement fac-
tors away from the bacteria [178]. NanA, BgaA, and
StrH have also been implicated in resistance to com-
plement C3-mediated opsonophagocytosis in addition
to their role in aiding pneumococci breach the naso-
pharyngeal epithelium barrier; this is via the deglyco-
sylation of key host effector molecules [179].

Resistance to CRP
CRP is an acute phase protein produced by the liver in re-
sponse to IL-6 and other pro-inflammatory cytokines gen-
erated during systemic acute infection [180]. Epithelial
cells in human respiratory tracts have also been reported
to secrete CRP, thus serving as important players in the in-
nate immune mechanisms against pneumococci [181].
During pneumococcal infections, CRP binds to ChoP on
the pneumococcal cell wall resulting in the activation C1q
[160]. PspA binds to ChoP moieties on the pneumococcal
cell surface, competitively inhibiting the interaction of
CRP with the cell wall [182]. Recent evidence suggests
that the dominant pneumococcal autolysin LytA also pre-
vents interaction of C1q and CRP, further reducing clas-
sical complement system activation [183]. In addition,
LytA was also demonstrated to increase recruitment of



Fig. 1 Streptococcus pneumoniae virulence determinants and host immune responses associated with pneumococcal infection in an anatomical
site-specific manner. S. pneumoniae virulence factors known to play a major role in pneumococcal colonisation and infection of the respiratory
mucosa, systemic circulation, and the brain, are listed in the left panel with the respective site-specific anti-pneumococcal host responses
displayed in the right panel. The role of host–pathogen molecular interaction in pneumococcal migration across the respiratory epithelial–endothelial
barrier and the blood–brain barrier is also highlighted in anatomical context. PrtA, serine protease; PspA, pneumococcal surface protein A; AMPs,
antimicrobial peptides; PdgA, N-acetylglucosamine deacetylase; Adr, O-acetyl transferase; IgA, immunoglobulin A; CbpA, choline binding protein A;
ChoP, cell wall phosphorylcholine; PsrP, pneumococcal serine rich repeat protein; MSCRAMMs, microbial surface components recognising adhesive
matrix molecules; PavA, pneumococcal adhesion and virulence A; PavB, pneumococcal adhesion and virulence B; CAZymes, carbohydrate-active
enzymes; NanA, neuraminidase; BgaA, beta-galactosidase; StrH, beta-N-acetylgucosaminidase; Hyl, hyaluronate lysase; PhpA, histidine triad protein A;
LytA, pneumococcal autolysin; Ply, pneumolysin; SpxB, pneumococcal pyruvate oxidase; EndA, endonuclease; sIgA, secretory IgA; CRP, C-Reactive
protein; NETs, neutrophil extracellular traps; PAFR, platelet activating factor receptor; pIgR, polymeric immunoglobulin receptor; LR, laminin receptor
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complement inhibitors C4b-binding protein and factor H
to the pneumococcal cell wall and actively degrade C3b
and iC3b [183].

Invasion of tissue from the bloodstream
Pneumococcal meningitis
Systemic spread of S. pneumoniae within the circulation
allows pneumococci access to the small blood vessels
within organs. In the cranium, this provides access to,
and can lead to translocation across, the blood–brain
barrier into the subarachnoid space leading to bacterial
meningitis. Worldwide, pneumococcal meningitis causes
more than 50,000 deaths each year in children aged
5 years or younger. Those that survive often have long-
term disabilities [184]. Pneumococci have been shown to
translocate across the brain microvascular endothelial
cells by binding to the vascular endothelial PAFR and
LR, in a ChoP- and CbpA-dependent manner, similar to
that previously described in pneumococcal invasion of
epithelial cells [52, 185]. A recent study also reports that
pIgR is present on the surface of brain microvascular
endothelium; thus invasion may occur in this manner as
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well [186]. Importantly, adhesion to LR seems to have a
conserved role in the pathogenesis of other neurotropic
pathogens such as Neisseria meningitidis, and Haemoph-
ilus influenzae [52]. In addition to the intracellular
translocation pathway, it is speculated that pneumococci
also migrate across the vascular endothelial cell linings
by disrupting the intercellular tight junctions during se-
vere disease episodes. S. pneumoniae can bind and acti-
vate plasminogen in blood and cerebral spinal fluid,
resulting in adhesion and damage to the extracellular
matrix in in vitro models of bacterial meningitis and af-
fected patients [187, 188]. Furthermore, pneumococci
use hyaluronate lyase to digest various components of
the intercellular milieu and host extra-cellular matrix,
including hyaluronic acid, chondroitin and/or chondro-
itin sulfates to breach the blood–brain barrier [189]. Al-
ternatively, it is thought that pneumococci may gain
access through the sinuses and olfactory nerves follow-
ing colonisation, in this instance causing occult meningi-
tis (i.e., meningitis without airway or bloodstream
infection) [190].
Once within the central nervous system, S. pneumoniae

can cause damage to the brain microvascular endothelial
cells during the course of pneumococcal meningitis [191].
Much of this ability to destroy the endothelial cell layer
guarding the blood–brain barrier is attributed to pneumo-
coccal Ply-mediated cytotoxicity in addition to the
pneumococcal cell wall [192, 193]. The pneumococcal cell
wall, and autolysis-mediated-Ply release induces a massive
inflammatory response in the central nervous system [194].
Ply and hydrogen peroxide produced by the activity of SpxB
contribute to the maximal neuronal apoptosis by caspase-
dependent and independent mechanisms [195, 196].
Pneumococcal-mediated inflammatory damage incites the
production of a wide array of cytokines that recruit im-
mune cells to the site of pneumococcal infiltration. Neutro-
phils and other immune leukocytes have been found in
spaces adjacent to subarachnoid arteries, meningeal veins,
and also cerebral spinal fluid compartments like the sub-
arachnoid spaces, meninges, and the corpus callosum of
the brain in experimental meningitis models [197, 198]. Ac-
tivated neutrophils secrete nitric and oxygen species [199],
which may also contribute to neuronal damage, associated
with pneumococcal meningitis.

Pneumococcal cardio-invasion
Recently, our laboratory has reported that during inva-
sive pneumococcal disease, S. pneumoniae circulating in
the bloodstream are capable of invading the ventricular
myocardium where they form bacteria-filled microscopic
lesions (cardiac microlesions) [200]. These cardiac
microlesions were accompanied by Ply-mediated cardio-
myocyte death and aberrant cardiac functionality [200].
Similar to pneumococcal invasion of the blood–brain
barrier, myocardial invasion was found to be dependent
on ChoP-PAFR and CbpA-LR interaction [200]. The
pneumococcal cell wall can bind to endothelial cells and
cardiomyocytes in a PAFR-dependent manner, effectively
exciting the cardiac vasculature and disrupting cardiac
contractility, ultimately causing cell death [201]. System-
ically circulating Ply also contributes towards the IPD-
associated cardiac damage [202]. This IPD-associated
cardiac damage might be responsible for the adverse car-
diac events that occur in up to 25 % of all elderly pa-
tients suffering from community-acquired pneumonia
[203, 204].

Conclusion
This review highlights the various host–pathogen inter-
actions associated with S. pneumoniae infection (Fig. 1).
Understanding the basic pneumococcal biology and the
complex link between its different virulence determi-
nants will hopefully provide the insight necessary to
solve the S. pneumoniae problem. Despite considerable
variability known to exist between experimental chal-
lenge in animal models and pneumococcal infections of
human populations, significant progress has been made
towards this end. Further work and its translation to
new and useful therapeutics is still required.

Search strategy
The articles relevant to this review were identified by
searching PubMed and Google Scholar for research pa-
pers and reviews (published in English only) including but
not limited to “Streptococcus pneumoniae”, “pneumo-
cocci”, “pneumococcal”, “pneumonia”, “otitis media”,
“virulence” and “pathogenesis”. To allow use of complete
and detailed information no limits on date of publications
were placed during the search. More suitable citations
were further identified from the references in these initial
searches.
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